![](http://www.hontecpcb.com/sys_m/WebEditor/uploadfile/201811592046957.JPG)
图2 相干接收功能框图
ADC的功能是通用的,主要技术难点是采样速率,如果要完整保留相位信息,ADC的采样速率至少达到信号波特率的两倍[10](Double Sampling)。采用20%编码冗余的FEC算法,则100G DWDM系统的实际信号速率将超过120G,波特率大约为30G,则双倍采样的ADC采样速率需达到60G左右;即使采用标准7%编码冗余的FEC算法,双倍采样ADC的采样速率也需达到54G以上。
3 100G CFP客户端模块
带宽需求的主要因素包含:不断增加的业务都是基于IP的,几乎所有的IP分组从源发送到宿的全过程都是封装在以太网帧中;时分复用在以太网中透传(TDM over Ethernet)的技术已经成熟,传统语音的兼容已经不是问题;以太网封装比同步光网络/同步数字体系(SONET/SDH)封装更简单而且成本更低。这些决定以太网接口速率升级到100 Gbit/s的需求是客观和迫切的,在100Gbit/s以太网上可以实现“网络通信加速、应用效能提升”的网络通信境界,能够快速存取储存于数据中心的种种应用,执行频宽管理、快取、压缩、路径最佳化及协议加速等功能。
IEEE802.3ba标准工作组已经完成了40Gb和100Gb以太网的标准化工作。在铜缆介质上传输7米,在单模&&&%&&%&&&%&&%&1介质传输高达40公里,建议所有的接口都采用了并行比特流。图3为100G CFP 模块功能框图。通信和计算机系统的主机接收端采用&&&%&&%&&&%&&%&3将电信号转换为光信号,然后,将其驱动至光纤信道。
同样的,主机发送端采用光模块将光信号转换为电信号,然后,将其驱动至铜缆电信道。将10×10GE或者4×25GE接口的100GE业务经ODU2/ODU3适配到OTU2/OTU3,在10G/40G光网络中通过多个波长进行传输。
可以不需对现存的10G/40G DWDM光网络进行重新设计与改动,传输码型仍然为光双二进制编码(ODB)/差分归零码(DRZ)/归零码-差分正交相移键控(RZ-DQPSK)。这种模式可以采用10G/40G现有的成熟光电器件,并且整个系统的性能指标和10G/40G系统一致。这一方案可实现网络平滑升级,满足运营商的成本期望。
%%%%%%%%%%0
图3 100G CFP 模块功能框图
4 结束语
100G DP-QPSK具有很高的谱效率以及很大的色散和PMD容限,支持50GHz通道间隔,可以更好地提高线路利用率,最大限度地为现有的密集波分复用系统提高光谱效率。100G DP-QPSK可以涵盖运营商在绝大多数的城域、区域、长途和超长途网络中的传输需求与应用。
作者简介:
胡毅,男,1973年11月生,高级工程师,中国通信学会会员,国家“863”项目负责人,现任武汉电信器件有限公司模块开发部经理,主导40G/100G光收发模块产品开发。成功主导开发的项目有:国家“863”项目《10Gb/s光电收发模块》,属于国内首创,具有国际先进水平,形成系列化产品和大批量商用,同时获得湖北省科技进步二等奖、中国通信学会二等奖以及2007年全国“五一”劳动奖章等。国家“十五”攻关重点项目《40Gb/s 光发射/接收模块》项目,具有国际先进水平;产品实用化项目获得武汉市创新人才开发资金重大创新专项(团队)专项资助。曾获得国家实用新型专利四项,参与制订国家通信行业标准两项。
参考文献:
[1] Tsuyoshi Yoshida, Takashi Sugihara, Kazushige Sawada et al., Polar Coordinate Transformation based Dual Binary-Drive QPSK Modulation[C]. OFC 2010, paper OMK4.
[2]E. Ip et al., Coherent detection in optical fiber systems[J]. Opt. Express 16, 753–791 (2008).
[3] Ly-Gagnon D.-S. , Tsukamoto, S. , Katoh, K et al., Coherent detection of optical quadrature phase-shift keying signals with carrier phase estimation [J]. Lightwave Technology. 24, 12–21 (2006).
[4] 100G Ultra Long Haul DWDM Framework Document[S]. OIF, Optical Internetworking Forum.
[5] I. Fatadin, S. J. Savory, D. Ives. Compensation of quadrature imbalance in an optical QPSK coherent receiver[J]. IEEE Photon. Technol. Lett., 2009, 20(20):1733~1735
[6] Xiang Zhou, Jianjun Yu, Dayou Qian et al., High-Spectral-Efficiency 114-Gb/s Transmission Using PolMux-RZ-8PSK Modulation Format and Single-Ended Digital Coherent Detection Technique[J] Lightwave Technology. 27, 146–152 (2009).
[7] Jeffrey Rahn, Gilad Goldfarb, Huan-Shang Tsaiet al., Low-Power, Polarization Tracked 45.6 GB/s per Wavelength PM-DQPSK Receiver in a 10-Channel Integrated Module[C]. OFC 2010, paper OThE2.
[8] Shaoliang Zhang, Lei Xu, Jianjun Yu et al., Experimental Demonstration of Decision-Aided Maximum Likelihood Phase Estimation in 8-Channel 42.8-Gbit/s DWDM Coherent PolMux-QPSK System[C]. OFC 2010, paper OMK1.
[9] Jean-Paul Faure, Bruno Lavigne, Christine Bresson et al., 40G and 100G deployment on 10G Infrastructure: market overview and trends, Coherent versus Conventional technology[C]. OFC 2010, paper OThE3.
[10] Fujitsu Microelectronics Europe GmbH, Maidenhead, Berkshire, United Kingdom, 56Gs/s ADC: Enabling 100GbE [C]. OFC 2010, paper OThT6.